ARE ALL HADRONS ALIKE? ELECTROPRODUCTION of RESONANCES at LARGE MOMENTUM TRANSFERS

Vladimir M. Braun¹

Institut für Theoretische Physik Universität Regensburg

¹M. Göckeler, R. Horsley, T. Kaltenbrunner, A. Lenz, Y. Nakamura, D. Pleiter, P. E. L. Rakow, J. Rohrwild, A. Schäfer, R. Schiel, G. Schierholz, H. Stüben, N. Warkentin, J. M. Zanotti

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary

- T.-S.H. Lee et al. Research Proposal: Nucleon Resonance Studies with CLAS12
 - (1) why we need large Q^2 ?
 - Which resonances to study?
 - physics goals?
 - It theory perspectives?

• In this talk I argue:

- $\mathbf{Q} \Rightarrow$ to select well-defined parton (valence) configurations
- $2 \Rightarrow$ concentrate on parity partners
- $\textcircled{3} \Rightarrow \text{ momentum fraction distributions of valence quarks and effects of orbital angular momentum}$
- ${\it @} \ \Rightarrow \ {\rm combination} \ {\rm of} \ {\rm lattice} \ {\rm calculations} \ {\rm and} \ {\rm light-cone} \ {\rm sum} \ {\rm rules}$

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary

Spontaneous chiral symmetry breaking lifts degeneracy between N(940), $J^P = \frac{1}{2}^+$ $N^*(1535)$, $J^P = \frac{1}{2}^-$ How is this reflected in their parton distributions?

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
QCD factorizatio	n				

In theory

Efremov, Radyushkin, Brodsky, Lepage, Chernyak

- quarks can acquire large transverse momenta when they exchange gluons
- "hard" gluon exchanges can be separated from "soft" nonperturbative wave functions
- hard gluons can only be exchanged at small transverse separations

In practice three-quark states indeed seem to dominate, however

- "Squeesing" to small transverse separations occurs very slowly
- Helicity selections rules do not work. Orbital angular momentum?
- $\bullet \ \Rightarrow \ \ \text{More complicated nonperturbative input needed}$

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
Wave funct	ions and Dist	tribution amo	olitudes		

• Nucleon light-cone wave function

Brodsky, Lepage

$$|P\uparrow\rangle^{\ell_z=0} = \int \frac{[dx][d^2\vec{k}]}{12\sqrt{x_1x_2x_3}} \psi^{L=0}(x_i,\vec{k}_i) \times \\ \times \left\{ \left| u^{\uparrow}(x_1,\vec{k}_1)u^{\downarrow}(x_2,\vec{k}_2)d^{\uparrow}(x_3,\vec{k}_3) \right\rangle - \left| u^{\uparrow}(x_1,\vec{k}_1)d^{\downarrow}(x_2,\vec{k}_2)u^{\uparrow}(x_3,\vec{k}_3) \right\rangle \right\}$$

• Leading-twist-three distribution amplitude

Brodsky, Lepage, Peskin, Chernyak, Zhitnitsky

$$\Phi_{3}(x_{1}, x_{2}, x_{3}; \mu) = 2 \int^{\mu} [d^{2}\vec{k}] \psi^{L=0}(x_{1}, x_{2}, x_{3}; \vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3})$$

can be studied using the OPE

$$\Phi_{3}(x_{i};\mu) = 120f_{N}x_{1}x_{2}x_{3}\left\{1 + c_{10}(x_{1} - 2x_{2} + x_{3})L^{\frac{8}{3\beta_{0}}} + c_{11}(x_{1} - x_{3})L^{\frac{20}{9\beta_{0}}} + c_{20}\left[1 + 7(x_{2} - 2x_{1}x_{3} - 2x_{2}^{2})\right]L^{\frac{14}{3\beta_{0}}} + c_{21}\left(1 - 4x_{2}\right)(x_{1} - x_{3})L^{\frac{40}{9\beta_{0}}} + c_{22}\left[3 - 9x_{2} + 8x_{2}^{2} - 12x_{1}x_{3}\right]L^{\frac{32}{9\beta_{0}}} + \dots\right\}$$

- $f_N(\mu_0)$: wave function at the origin
- $c_{nk}(\mu_0)$: shape parameters

 $L \equiv \alpha_s(\mu) / \alpha_s(\mu_0)$

Braun, Manashov, Rohwild

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
Wave fund	ctions and Dist	ribution amp	olitudes (II)		
• Contribut	ions of orbital ang	gular momentur	m	Ji, Ma, Yua	an, '03
$ P\uparrow\rangle^{\ell_z=1}$	$= \int \frac{[dx][d^2\vec{k}]}{12\sqrt{x_1x_2x_2}}$	$\frac{1}{3}\left[k_1^+\psi_1^{L=1}(x_i,\vec{k}_i)\right]$	$k_{i}^{+}) + k_{2}^{+}\psi_{2}^{L=1}(x_{i}),$	$\left \vec{k}_i ight ight imes$	
	$\times \Big\{ \Big u^{\uparrow}(x_1, \vec{k}_1$	$)u^{\downarrow}(x_2, \vec{k}_2)d^{\downarrow}(x_3,$	$\left \vec{k}_{3} \right\rangle ight angle - \left d^{\uparrow}(x_{1}, \vec{k}) \right\rangle$	$(x_1)u^{\downarrow}(x_2, \vec{k}_2)u^{\downarrow}(x_3)u$	$\left. \left. \left. \vec{k}_{3} \right) \right\rangle \right\}$

are related to higher-twist-four distribution amplitudes

Belitsky, Ji, Yuan, '03

$$\begin{split} \Phi_4(x_2, x_1, x_3; \mu) &= 2 \int^{\mu} \frac{[d^2 \vec{k}]}{m_N x_3} \ k_3^- \left[k_1^+ \psi_1^{L=1} + k_2^+ \psi_2^{L=1} \right] (x_i, \vec{k}_i) \\ \Psi_4(x_1, x_2, x_3; \mu) &= 2 \int^{\mu} \frac{[d^2 \vec{k}]}{m_N x_2} \ k_2^- \left[k_1^+ \psi_1^{L=1} + k_2^+ \psi_2^{L=1} \right] (x_i, \vec{k}_i) \end{split}$$

and, again, can be studied using OPE

Braun, Fries, Mahnke, Stein '00

$$\Phi_4(x_i;\mu) = 12\lambda_1 x_1 x_2 + 12f_N x_1 x_2 \left[1 + \frac{2}{3}(1 - 5x_3)\right] + \dots$$

$$\Psi_4(x_i;\mu) = 12\lambda_1 x_1 x_3 + 12f_N x_1 x_3 \left[1 + \frac{2}{3}(1 - 5x_2)\right] + \dots$$

• to this accuracy only one new nonperturbative constant $\lambda_1(\mu)$

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
What is	to be done?				

Braun et al. Phys.Rev.Lett.103:072001,2009

- - expensive
 - many technical problems still need to be solved
 - only limited information
 - studies of parity partners look most promising, e.g.

 $\langle 0|qqq|N(p)\rangle = f_N N(p)$ $\langle 0|qqq|N^*(p)\rangle = f_{N^*} \gamma_5 N(p)$

- - based on analyticity and quark-hadron duality
 - well-known and tested technique for mesons, less so for baryons
 - irredicible uncertainty of 20%(?) need confirmation
 - NLO calculations so far not available

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary				
Parity se	paration								

• New: Generalized Lee-Leinweber parity projectors implemented

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary	
Overview of lattices						
Overview	1 of lattices					
Overview	v of lattices					

$N_f = 2$ clover Wilson fermions

κ	$m_{\pi}/$ MeV	Size	# Configurations				
$\beta = 5.29, a = 0.0753 \text{ fm}$							
0.13590	627	$24^3 \times 48$	901				
0.13620	407	$24^3 \times 48$	850				
0 13632	282	$30^{3} \times 64$	578 + more				
0.13032	202	$32^{\circ} \times 04$	in progress				
0.13632	271	$40^3 \times 64$	in progress				
0.13640	170	$40^{3} \times 64$	coming soon				
	$\beta = 5.40$	0, a = 0.067	2 fm				
0.13610	648	$24^3 \times 48$	687				
0.13625	558	$24^3 \times 48$	1180				
0.13640	451	$24^3 \times 48$	1037				
0.13660	233	$48^3 \times 64$	coming soon				

[QCDSF collaboration]

• All results preliminary, statistical errors only, no chiral extrapolation

 $m_{2}^{2} [GeV^{2}]$

thanks to Rainer Schiel

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
Shape pa	rameters				

• All results preliminary, statistical errors only, no chiral extrapolation

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
Shape pa	rameters (II)				

- Momentum fraction distribution of valence quarks in $N^*(1535)$ is much more asymmetric as compared to the nucleon
- All results preliminary, statistical errors only, no chiral extrapolation

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
Open pr	oblems				

• Energy conservation on a lattice

$$\partial (A \cdot B) = (\partial A) \cdot B + A \cdot (\partial B) + \mathcal{O}(a)$$

In our latest data

 $x_1 + x_2 + x_3 \simeq 0.94$

Becomes a serious issue for second moments

- Calculations of third, fourth etc. moments not feasible (nonperturbative operator renormalization needed)
- Decay width $\Gamma \sim 150$ MeV, $N^*(1535) \rightarrow N\pi, N\eta$
- Contamination by $N^*(1650)$

From distribution amplitides to form factors: Duality

Davier et al., Eur.Phys.J.C27:497-521,2003

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary

a consequence of two major principles:

$$R(s) = \frac{1}{\pi} \operatorname{Im} \Pi(s = q^2)$$

where

$$i \int d^4x \, e^{iqx} \langle 0 | T\{j^{\rm em}_{\mu}(x)j^{\rm em}_{\nu}(0)\} | 0 \rangle \, = \, (q_{\mu}q_{\nu} - g_{\mu\nu}q^2) \Pi(q^2)$$

• analyticity — causality

$$R(s) = \frac{1}{2\pi i} [\Pi(q^2 + i\epsilon) - \Pi(q^2 - i\epsilon)]$$

$$\int_{0}^{s_0} ds R(s) = \frac{1}{2\pi i} \oint dq^2 R(q^2)$$

$$\simeq \frac{1}{2i} \oint dq^2 R^{\text{pQCD}}(q^2)$$

$$\lim_{R \to q^2} S_0$$

$$Re q^2$$

because the region of $q^2 \sim \Lambda_{
m QCD}^2$ is avoided

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary			
can be us	ed to estimate hadro	on properties						
example: pi	on decay constant							
	$\langle 0 A_{\mu}(0) \pi^+(p)\rangle$	$\langle p \rangle \rangle = i p_{\mu} f_{\pi},$	$A_{\mu} = \bar{u}\gamma_{\mu}\gamma$	$_{5}d$				
consider								
	$i \int d^4 r e^{iqx} \langle 0 T \{A$	$(x) A^{\dagger}(0) \{ 0 \} =$	$(a_1, a_2, -a_2, a_2)$	$\Pi_A(a^2)$				
		$\mu(w) = \mu(v) = 0$	(4µ4v 9µv4)	$(\Pi A(q))$				
physic	al spectral density: R	$R_A^{\rm phys}(s) = f_\pi^2 \delta(s - t_A)$	$(-m_\pi^2) + resonant$	nces + continuum	I			
• QCD s	spectral density: R	${}_A^{\rm QCD}(s) = \frac{1}{4\pi^2} +$	corrections					
equating \int_{0}^{1}	equating $\int_{0}^{s_{0}} ds R_{A}^{\text{phys}}(s) = \int_{0}^{s_{0}} ds R_{A}^{\text{QCD}}(s)$ obtain a duality relation:							
	<i>s</i> 0	$= 4\pi^2 f_\pi^2,$	$s_0 \sim 0.7 ~{ m GeV}^2$					
IMPORT	ANT: $s_0 \gg \Lambda_{ m QCL}^2$	$_{\rm O} \sim (0.2 {\rm GeV})^2;$	$lpha_s(s_0)/\pi <$	≪ 1				
• refinem	ent \Rightarrow QCD sum rule a	pproach Shifman, Vainst	tein. Zakharov. Nu	cl.Phvs.B147:385-44	7.1979			

3646 citations in SLAC SPIRES, as of 13.05.10

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
Light-Cone	Sum Rules	Example: pior	n form factor		
• another ref	inement \Rightarrow Light	-Cone Sum Rules:	:		
$T_{\mu u}(p,q)$	$) = i \int dx e^{-i\phi}$	$T^x\langle 0 T\{A_{\nu}(0)j_{\mu}^{\mathrm{em}}\}$	$ \pi(x)\} \pi(p) angle$ =	$= 2p_{\mu}p_{\nu}T(p,q) + \dots$	
duality:	9			q \forall	
	p-q	$\pi \xrightarrow{p}$		p p p	
		Å		Ą	
	$\frac{1}{\pi}\int_0^{s_0} ds \mathbf{I}$	$m \ T(p,q)$	$\stackrel{duality}{=}$	$f_{\pi}F_{\pi}(Q^2)$	

 T(p, q) is calculated in terms of distribution amplitudes of increasing twist Balitsky, Braun, Kolesnichenko, Nucl.Phys.B312:509-550,1989 Braun, Halperin, Phys.Lett.B328:457-465,1994

Prologue	Wav	e functions	Strategy	Lattice	LCSRs	Summary
• Leading-ord	der o	calculation			q	p
T(p,q)	=	$\int_0^1 dx \frac{1}{(1-x)^2} dx \frac{1}{(1-x)^2} dx \frac{1}{(1-x)^2} dx \frac{1}{(1-x)^2} $	$\frac{xf_{\pi}\phi_{\pi}(x)}{x)Q^2 - xs - i\epsilon},$	$s = \left(p - q\right)^2$	p-q	$\pi \rightarrow$
$\frac{1}{\pi} \text{Im } T(s)$	=	$f_{\pi} \int_0^1 dx x\phi$	$_{\pi}(x)\delta((1-x)Q^2 -$	$-xs) = \frac{f_{\pi} Q^2}{(Q^2 + s)^2}$	$\phi_{\pi}\left(x=Q^2/(Q^2)\right)$	((s+s))

leading to

$$F_{\pi}(Q^2) = \frac{1}{\pi f_{\pi}} \int_0^{s_0} ds \operatorname{Im} T(s) = \int_{Q^2/(Q^2 + s_0)}^1 dx \, \phi_{\pi}(x)$$

- integral over the end-point region $\ \hookrightarrow$ purely soft contribution
- $\phi_{\pi}(x) \sim (1-x)$ for $x \to 1 \ \hookrightarrow$ suppression
- for asymptotic DA $\phi_{\pi}(x) = 6x(1-x)$ (example)

$$F_{\pi}^{\text{soft}}(Q^2) = \frac{s_0^2}{(Q^2 + s_0)^2} \Big[1 + 2Q^2 / (Q^2 + s_0) \Big], \qquad F_{\pi}^{\text{hard}}(Q^2) = \frac{8\pi f_{\pi}^2 \alpha_s(Q^2)}{Q^2} = \frac{\alpha_s}{\pi} \frac{2s_0}{Q^2}$$

- loose s_0/Q^2 but win α_s/π
- note $s_0/Q^2 \gg \Lambda_{
 m QCD}^2/Q^2$ (factor 10)

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
different d	ispersion parts:			radiative o	corrections
	q	q		q	

hard rescattering

a complicated interplay of soft and hard contributions;

explicit calculation suggests significant cancellations between soft and hard higher-twist corrections

Braun, Khodjamirian, Maul, Phys.Rev.D61:073004,2000

qGq component in the WF

initial state interaction

Ball, Zwicky, Phys.Rev.D71:014015,2005 Duplancic, et al., JHEP 0804:014,2008

Flynn, Nieves, Phys.Rev.D76:031302,2007

$$|V_{ub}| = (3.5 \pm 0.4 \pm 0.2 \pm 0.1) \times 10^{-3}$$

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary

Light-Cone Sum Rules: Nucleon Electromagnetic Formfactors

Braun, Lenz, Wittmann; PRD73:094019,2006

• Nucleon DAs fitted to the G_E^p/G_M^p ratio

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
Electroprodu	ction $\gamma^* N \to N^* (15)$	35)			

electromagnetic transition matrix element

$$\langle N^{*}(P')|j_{\nu}^{\rm em}|N(P)\rangle = \bar{N}^{*}(P')\left(\frac{G_{1}(q^{2})}{m_{N}^{2}}(\not q_{\nu}-q^{2}\gamma_{\nu})-i\frac{G_{2}(q^{2})}{m_{N}}\sigma_{\nu\rho}q^{\rho}\right)\gamma_{5}N(P)$$

Aznauryan, Burkert, Lee, arXiv:0810.0997

helicity amplitudes

$$A_{1/2}(Q^2) = -e B \left[Q^2 G_1(Q^2) - m_N(m_{N^*} - m_N) G_2(Q^2) \right]$$

$$S_{1/2}(Q^2) = \frac{e}{\sqrt{2}} B C \left[(m_{N^*} - m_N) G_1(Q^2) + m_N G_2(Q^2) \right]$$

with

$$B = \sqrt{\frac{Q^2 + (m_{N*} + m_N)^2}{2m_N^5(m_{N*}^2 - m_N^2)}} \qquad C = \sqrt{1 + \frac{(Q^2 - m_{N*}^2 + m_N^2)^2}{4Q^2m_{N*}^2}}$$

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
$\gamma^* N \to N^*$	*(1535): helicity ampli	tudes			

• A pilot project: Braun *et al.* Phys.Rev.Lett.103:072001,2009 Electroproduction of $N^*(1535)$ with lattice-constrained N^* distribution amplitides

CLAS $S_{1/2}$ data: I.G. Aznauryan et al., Phys.Rev.C80:055203,2009

V. M. Braun (Regensburg)

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
* 37					

- Both form factors show a dipole behavior
- Negative $S_{1/2}$ implies smallness of $G_2(Q^2)$

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
Open problems					

• Next-to-leading-order (NLO) corrections needed

general structure of the $Q^2 \rightarrow \infty$ expansion

$$\underbrace{1 \cdot \frac{1}{Q^6} + \frac{\alpha_s(s_0)}{\pi} \cdot \frac{1}{Q^6}}_{\Uparrow \text{ LCSR}} + \left(\frac{\alpha_s(Q^2)}{\pi}\right)^2 \cdot \frac{1}{Q^4}$$

this is not a straightforward calculation

• Kinematic power corrections proportional to powers of m_{N^*}

$$1 + \frac{m_{N^*}^2}{s_0} + \dots, \qquad s_0 \sim 2.5 \,\, {
m GeV}^2$$

resummation ?

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary					
First barvo	First baryon LCSRs with NLO corrections									

Passek-Kumericki, Peters, Phys.Rev.D78:033009,2008

Figure: LCSR results for the electromagnetic proton form factors for a realistic model of nucleon distribution amplitudes. Left panel: Leading order (LO); right panel: next-to-leading order (NLO) for twist-three contributions. Figure adapted from [PassekKumericki:2008sj].

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
• Combination to study to	on of lattice QCD a ransition region to p	and light-cone sum perturbative QCD	ı rules offers one	a powerful meth	od

Goal

Valence quark distributions in nucleon resonances

- Pilot project: $\gamma^* N \to N^*(1535)$
- Lattice:
 - new lattices, $m_{\pi} \sim 280 MeV$
 - new code
 - improved parity separation implemented
- LCSR:
 - first results on NLO corrections
 - new DFG project 9209475

Prologue	Wave functions	Strategy	Lattice	LCSRs	Summary
Disclaimer					

From Wikipedia:

 $\begin{array}{l} \mbox{Pilot project is a short and/or incomplete realization of a certain method or idea(s) to} \\ \mbox{demonstrate its feasibility, or a demonstration in principle, whose purpose is to verify that} \end{array}$

some concept or theory is probably capable of being useful

We have a long way to go!

